Guizhi Julian Zhu, PhD
Assistant Professor
Department of Pharmaceutics
Faculty/Staff picture
  •   Smith Building, Room 454D
  • School of Pharmacy - Dept of Pharmaceutics
    410 N 12th Street
    P.O. Box 980533
    Richmond, VA 23298-0533
  •  804-828-1609
    804 828‐8359
1 postdoc and 2 PhD/MS student positions available in the lab (updated 11.24, 2018): 1 sponsored postdoc position on cancer immunotherapy/immunoenginering/nanomedicines/biomaterials is immediately available. Animal work experience is required. Candidates with related previous research experiences are preferred. Please send CV/Research Experience/Research Plan in one PDF file to Training: design and execute cutting-edging research projects, lead collaborations with colleagues at Massey Cancer Center and hospitals, mentor graduate students, and assist in grant writing. 1 sponsored PhD and 1-2 self-funded MS student positions are open for enrollment in Fall 2019. Students will be trained in cancer immunotherapy, immunoengineering, and nanomedicines. Please send CV/Personal Statement in one PDF file to

Area of Focus

  • Nanomedicine and nanovaccine; ImmunoEngineering, Immunotherapy, ImmunoTheranostics; Pharmacoengineering; Nucleic acid therapeutics and probes (plasmid, mRNA, Aptamer, etc); Cancer, Immune disorders.


  • B.S., Biotechnology (Nankai University, 2008)
  • Ph.D., Medical Science - Physiology and Pharmacology (University of Florida, 2013)

Post-Graduate Training

  • Postdoc - Nanomedicine and bioimaging for cancer immunotherapy (National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, 2018)

Professional Experience

  • (2018 - Present) Assistant Professor, Virginia Commonwealth University

Research Interests

  • My research interests lie at the interface of immune-oncology, nucleic acid therapeutics, nanomedicine, pharmacoengineering and pharmacoimaging. My current focus is to develop “off-the-shelf” nucleic acid nanomedicines to modulate the immune system to treat cancer, and to interrogate the immuno-nano interfaces by super-resolution imaging. My long-term goal is to implement immunotherapy to a broad population of patients.
  • Awards and Honors: 2018: KL2 Mentored Clinical Research Scholar Award, National Center for Advancing Translational Sciences; 2017: Top 15 Abstract, World Molecular Imaging Congress meeting; 2017: Distinguished Scientist Award, Chinese Students and Scholars Association, NIH; 2014: Travel Award, Oligonucleotide Therapeutics Society; 2013: Dr. Alan M. Gewirtz Memorial Scholarship, Oligonucleotide Therapeutics Society; 2013: Early Career Investigator Fellowship, Nanotechnologies in Cancer Diagnosis, Therapy, and Prevention, New York Academy of Sciences; 2008 - 2009: Grinter Fellowship, College of Medicine, University of Florida; 2008: Travel Award, College of Medicine, University of Florida; 2005 - 2007: Outstanding Student Fellowship, Nankai University.


Books/Book Chapters

  • Book chapter: Zhu G, Qiu L, Meng H, Mei L, Tan W.: Aptamers-guided DNA nanodevice for cancer theranostics. Aptamers Selected by Cell-SELEX for Theranostics (Editor: Dr. Weihong Tan) 2015, 111-37


  • Chen X, Zhu G. Albumin binding immunomodulatory compositions. (PCT application) 62/331, 890.

Recent Publications

  • See full publication list in
  • Representative Publications (*: co-first author; #: co-corresponding author):
  • Zhu G, Lynn G, Jacobson O, Liu Y, Zhang H, Ma Y, Zhang F, Tian R, Ni Q, Cheng S, Wang Z, Lu N, Yung BC, Wang Z, Lang L, Fu X, Jin A, Weiss ID, Vishwasrao HD, Niu G, Shroff H, Klinman DM, Seder RA, Chen X. Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nature Communications 2017, 8(1):1954
  • Zhu G, Mei L, Vishwasrao HD, Jacobson O, Liu Y, Yung BC, Fu X, Jin A, Niu G, Wang Q, Zhang F#, Shroff H, Chen X#. Intertwining DNA-RNA nanocapsules loaded with tumor neoantigens as synergistic nanovaccines for personalized cancer immunotherapy. Nature Communications 2017, 1482. DOI:10.1038/s41467-017-01386-7
  • Zhu G, Zhang F, Ni Q, Niu G, Chen X. Nanovaccine for efficient vaccine delivery in cancer immunotherapy. ACS Nano 2017, 11 (3), 2387–92 (Perspective)
  • Ni Q*, Zhang F, Wang Z, Niu G, Lu G, Zhu G#, Zhang L#, Chen X#. (author list may vary) Nanotemplated synthesis of neoantigen-delivering nanoadjuvants for personalized cancer immunotherapy. (In prep.)
  • Ni Q*, Zhang F*, Zhang Y*, Zhu G#, Wang Z, Teng Z, Wang C, Niu G, Lu G, Zhang L#, Chen X#. In situ synthesis of poly-shRNA on nanoparticles for synergistic delivery of shRNA and Doxorubicin to treat multidrug resistant breast cancer. Adv. Mater. 2018. 30(10) (Inside Cover Paper)
  • Zhang F*, Ni Q*, Tian R, Jacobson O, Yu G, Zhu G#, Zhang L#, X Chen#. Polymeric Nanoparticles with Glutathione-Sensitive Heterodimeric Multifunctional Prodrug for In Vivo Drug Monitoring and Synergistic Cancer Therapy. Angew. Chem. Inter. Ed. 2018, 57(24):7066-7070.
  • Zhang F, Zhu G#, Jacobson O, Liu Y, Chen K, Yu G, Ni Q, Fan J, Yang Z, Xu F, Fu X, Wang Z, Ma Y, Niu G, Zhao X, X Chen#. Transformative nanomedicine of an amphiphilic camptothecin prodrug for long circulation and high tumor uptake in cancer therapy. ACS Nano 2017, 11(9):8838-48
  • Zhu G, Chen X. Aptamer-based drug development. Adv. Drug Deliv. Rev. (Invited review. In revision)
  • Chen H, Zhang W, Zhu G, Xie J#, Chen X#. Rethinking cancer nanotheranostics. Nature Reviews Materials 2017, 2, 17024
  • Cheng S, Jacobson O, Wang Z, Niu G#, Zhu G#, Zhu X#, X Chen#. (author list may vary) PET molecular imaging of EGFR in cancer using a chemically stabilized RNA aptamer. (In revision. European Journal of Nuclear Medicine and Molecular Imaging)
  • Zhu G, Zhang H, Jacobson O, Wang Z, Chen H, Niu G, Chen X. Combinatory screening of DNA aptamers for molecular imaging of HER2 in cancer. Bioconjug. Chem. 2017 28(4):1068-75
  • Zhu G, Liu Y, Yang X, Kim YH, Zhang H, Jia R, Liao HS, Jin A, Lin J, Aronova M, Leapman R, Nie Z, Niu G, Chen X. DNA-inorganic hybrid nanovaccine for cancer immunotherapy. Nanoscale. 2016 8(12):6684-92
  • Zhu G, Cansiz S, You M, Qiu L, Han D, Zhang L, Mei L, Fu T, Chen Z, Tan W: Nuclease-resistant synthetic drug-DNA adducts: programmable drug-DNA conjugation for targeted anticancer drug delivery. NPG Asia Mater. 2015 7, e169
  • Zhu G, Niu G, Chen X. Aptamer-drug conjugates. Bioconjug. Chem. 2015 26(11):2186-97
  • Trinh TL*, Zhu G*, Xiao X, Puszyk W, Sefah K, Wu Q, Tan W, Liu C. A synthetic aptamer-drug adduct for targeted liver cancer therapy. Plos One 2015 10(11):e0136673
  • Mei L*, Zhu G*, Qiu L, Wu C, Chen H, Liang H, Cansiz S, Lv Y, Zhang X#, Tan W#: Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery. Nano Res. 2015 8(11) 3447-60
  • Zhang L*, Zhu G*, Mei L, Wu C, Qiu L, Cui C, Liu Y, Teng IT, Tan W. Self-assembled DNA immunonanoflowers as multivalent CpG nanoagents. ACS Appl. Mater. Interfaces. 2015, 7(43):24069-74.
  • Wang R, Zhu G, Mei L, Xie Y, Ma H, Ye M, Qing FL, Tan W. Automated modular synthesis of aptamer-drug conjugates for targeted drug delivery. J. Am. Chem. Soc. 2014, 136(7):2731-4
  • Sefah K*, Yang Z*, Bradley KM, Hoshika S, Jiménez E, Zhang L, Zhu G, Shanker S, Yu F, Turek D, Tan W, Benner SA. In vitro selection with artificial expanded genetic information systems. Proc. Natl. Acad. Sci. U.S.A. 2014, 111(4):1449-54
  • Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C, Tan W. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc. Natl. Acad. Sci. U.S.A. 2013, 110(20):7998-8003 (** Highlighted by NCI Alliance for Nanotechnology in Cancer, Nanomedicine, Nano today, University of Florida, Gainesville Sun, etc.)
  • Zhu G, Zhang S, Song E, Zheng J, Hu R, Fang X, Tan W. Building fluorescent DNA nanodevices on target living cell surfaces. Angew. Chem. Int. Ed. 2013, 52(21):5490-6 (** Frontispiece cover paper)
  • Zhu G*, Hu*, Zhao Z, Chen Z, Zhang X, Tan W.: Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications. J. Am. Chem. Soc. 2013, 135(44):16438-45 (Highlighted by Nature’s Science-Business Exchange (SciBX), etc.)
  • Zhu G, Meng L, Ye M, Yang L, Sefah K, O'Donoghue MB, Chen Y, Xiong X, Huang J, Song E, Tan W. Self-assembled aptamer-based drug carriers for bispecific cytotoxicity to cancer cells. Chem. Asian J. 2012, 7(7):1630-36
  • Zhu G, Ye M, Donovan MJ, Song E, Zhao Z, Tan W. Nucleic acid aptamers: an emerging frontier in cancer therapy. Chem. Commun. 2012, 48(85):10472-80